
Proceedings of Machine Learning Research vol 145:1–20, 2022 3rd Annual Conference on Mathematical and Scientific Machine Learning

Hierarchical partition of unity networks: fast multilevel training

Nathaniel Trask NATRASK@SANDIA.GOV

Center for Computing Research, Sandia National Laboratories,Albuquerque, NM, USA
Amelia Henriksen
Center for Computing Research, Sandia National Laboratories,Albuquerque, NM, USA
Carianne Martinez
Applied Information Sciences Center, Sandia National Laboratories, Albuquerque, NM, USA
Eric C. Cyr ECCYR@SANDIA.GOV

Center for Computing Research, Sandia National Laboratories,Albuquerque, NM, USA

Editors: Bin Dong, Qianxiao Li, Lei Wang, Zhi-Qin John Xu

Abstract
We present a probabilistic mixture of experts framework to perform nonparametric piecewise poly-
nomial approximation without the need for an underlying mesh partitioning space. Deep neural
networks traditionally used for classification provide a means of localizing polynomial approxima-
tion, and the probabilistic formulation admits a trivially parallelizable expectation maximization
(EM) strategy. We then introduce a hierarchical architecture whose EM loss naturally decomposes
into coarse and fine scale terms and small decoupled least squares problems. We exploit this hierar-
chical structure to formulate a V-cycle multigrid-inspired training algorithm. A suite of benchmarks
demonstrate the ability of the scheme to: realize for smooth data algebraic convergence with re-
spect to number of partitions, exponential convergence with respect to polynomial order; exactly
reproduce piecewise polynomial functions; and demonstrate through an application to data-driven
semiconductor modeling the ability to accurately treat data spanning several orders of magnitude.
Keywords: nonparametric regression, deep learning, partition of unity, nonlinear approximation

1. Introduction

We consider the approximation of functions y ∈ V from scattered data D := {xi, yi}Nd
i=1, where

xi ⊂ Rd and V is a Banach space. For datasets with latent low-dimensional manifold structure
where xi ∈ M, dim(M) = l ≪ d, deep neural networks (DNNs) have been shown to “break
the curse of dimensionality” Poggio et al. (2017); Bach (2017). Namely, they provide approxima-
tion whose accuracy scales with l, independent of d. This, coupled with the universal approxi-
mation property of DNNs, has led to a flurry of interest using DNNs to both construct surrogates
in high-dimensional spaces Tripathy and Bilionis (2018); Schwab and Zech (2019) and to solve
high-dimensional partial differential equations and inverse problems Han et al. (2018). Addition-
ally, others have shown success using DNNs as meshfree nonlinear approximation spaces to solve
forward and inverse problems Lagaris et al. (1998); Raissi et al. (2019); Berg and Nyström (2018).
For all of these applications however, DNNs fail to exhibit convergence with increasing network
capacity and produce O(1) errors. While the universal approximation property provides guarantees
of arbitrarily small error for optimally trained large networks of sufficient size, when training with
first-order optimizers a sub-optimal approximation is typically realized and often struggles with

© 2022 N. Trask, A. Henriksen, C. Martinez & E.C. Cyr.

TRASK HENRIKSEN MARTINEZ CYR

approximation of multiscale data Beck et al. (2019); Wang et al. (2021a,b). In more traditional nu-
merical analysis, mesh refinement forms a cornerstone of verification and validation for modeling
and simulation Oberkampf and Roy (2010). Demonstration of solution convergence as the approx-
imation resolution is improved, coupled with an error analysis establishing consistency, indicates
convergence to a true solution and provides necessary trust in high consequence engineering envi-
ronments. If DNNs are to be used in similar high consequence scientific settings, deep surrogates,
PDE solvers, and inverse problems must provide similar refinement guarantees.

In the last five years, a number of approximation theoretic works have established the exis-
tence of DNNs which converge algebraically with respect to width or depth. Yartotsky established
convergence of networks with respect to width and depth Yarotsky (2017, 2018). He et al. (2018)
established an interpretation of shallow ReLU feedworward networks as adaptive piecewise linear
finite element space, while Opschoor et al. (2020) established that DNNs may actually emulate a
much wider range of traditional approximators, such as spectral approximants, free-knot splines,
hp-finite element spaces, and radial basis functions. Despite these advances in understanding the
potential approximation power of DNNs, these theoretical works do not establish convergence of
networks trained with gradient descent. Cyr et al. (2020) introduced a block coordinate descent
optimizer and initialization scheme which allowed demonstration of first-order convergence with
respect to network width. Motivated by Opschoor et al. (2020)’s construction that DNNs may emu-
late both partitions of space and monomials, Lee et al. (2021) introduced POU-nets which explicitly
incorporate the partition and polynomial emulation into the network architecture: a classification
architecture provides a partition of space into N partitions, while a polynomial basis of dimension
M associated with each partition forms the localized approximation.

Global polynomial approximants are well-known to require careful choice of nodal degrees of
freedom to construct numerically stable approximation, rendering them ineffective for unstructured
data Boyd (2001); Ibrahimoglu (2016). Localized polynomial approximants, such as splines or
hp-finite element spaces, provide stable approximation but require human-in-the-loop construction
of a mesh (partition of space) which is challenging in complex geometries or high dimensions.
POU-nets therefore provide a potential means of automating mesh generation while exploiting the
desirable approximation properties of polynomials. As we will discuss later however, the training
of POU-nets is sensitive to the choice of hyper-parameters with no reliable way to train, and in this
work we aim to develop a robust generalization of hybrid DNN/polynomial approximation. For all
results presented, we use a single set of hyperparameters and vary only the number of partitions.

We will show that, in expectation, POU-Nets admit interpretation as a mixture of experts (MoE)
model Masoudnia and Ebrahimpour (2014) using deep networks as gating functions and polyno-
mials as expert models. Jordan and Jacobs (1994) showed that mixture of expert models may be
assembled into a hierarchical architecture and trained with expectation maximization. While the
focus of their work was to identify models tailored toward different subpopulations of a data set,
we will show that the gating functions in MoE may be used to localize polynomial approximation.
Additionally, the hierarchical architecture employed by Jordan prompts a question about whether
POU-nets may be reformulated in a manner exploiting hierarchical structure. Approximation of
multiscale data has been a major challenge for DNNs Wang et al. (2021b). Yet in traditional scien-
tific computing multilevel approaches are ubiquitous to handling and exploiting multiscale problem
structure: e.g. algebraic/geometric multigrid Trottenberg et al. (2000), wavelets Graps (1995); Mal-
lat (1999), fast multipole methods Greengard and Gropp (1990), and fast Fourier methods Cooley
and Tukey (1965) all combine hierarchical approximation with fast algorithms. In this work we

2

MULTILEVEL HPOU

present a multilevel scheme for training a hierarchy of POU-nets, inspired by the V-cycle used
in geometric multigrid. Reformulating POU-nets as a probabilistic model allow an expectation-
maximization (EM) strategy for optimizing alternatively between coarse and fine scales, combining
a nested approximation architecture with a multilevel optimization scheme. As a result, the proposed
approach, compared to a single level EM strategy, is more robust to getting trapped in suboptimal
local extrema during training. This reformulation also admits a number of major advances beyond
Lee et al. (2021): the EM strategy allows a trivially parallelizable inversion of a large number of
small matrices (solve N decoupled rank M matrices) rather than the single large matrix handle in
POU-nets (solve one rank N×M matrix). This hierarchical parallelism provides new opportunities
to accelerate training and inference of DNNs, which currently are dominated by a paradigm of GPU-
accelerated back propagation. Other contributions include closed form expressions for uncertainty
which follow from the probabilistic formulation.

We proceed by first reviewing aspects of POU-nets in the deterministic setting as presented
in Lee et al. (2021). Then a probabilistic reformulation is introduced that matches the deterministic
one in expectation. Next, we introduce the hierarchical setting and describe in section Section 4.1
the connection to traditional multilevel schemes, noting that the ELBO used in EM decouples be-
tween scales during the V-cycle. Finally, a number of experiments in 1D and 2D explore the ability
of the approach to reliably produce localized approximations of both smooth and low regularity
data.

2. Deterministic POU-nets

We summarize here the deterministic approach pursued in Lee et al. (2021), where an approximation
of y is given as

yPOU (x; θ) =

N∑
p=1

ϕp(x, θ)qp(x), (1)

where N is the number of partitions, ϕp is a partition of unity (ϕp > 0,
∑

p ϕp = 1), and qp is a
member of the Banach space Q = span(Φ1, ...,ΦM) ⊂ V . For this paper, we will consider only
the space of mth order polynomials Q = πm(Rd), though other spaces may be used and are likely
to be advantageous. For polynomial Q, with the POU chosen as indicator functions on compactly
supported disjoint sets (ϕp = 1Ωp , Ωp ∩ Ωq = ∅ for all p, q) traditional piecewise polynomial
approximation spaces are recovered. Instead, we introduce a parameterization of ϕ which may be
calibrated from data. If during training parameters are obtained such that ϕ has compact support,
one obtains hp−convergence as follows.

Theorem 1 Lee et al. (2021) Consider yPOU with Q = πm(Rd). If y(·) ∈ Cm+1(Ω) and qp solves

min
q′p∈Q

∑
d

∣∣∣∣∣∣yd −
N∑
p=1

ϕp(xd, θ)q
′
p(x)

∣∣∣∣∣∣
2

(2)

for all p to yield yPOU, then

∥y∗POU − y∥2ℓ2(D) ≤ Cm,y max
p

diam (supp(ϕp))
m+1 , (3)

where ∥ · ∥ℓ2(D) denotes the root-mean-square norm over the training data pairs in D.

3

TRASK HENRIKSEN MARTINEZ CYR

In Lee et al. (2021), each step of training consists of a dense linear solve corresponding to the
least squares problem Equation 2, followed by a gradient update of θ . The method therefore alter-
nates between updating the polynomial and partition models, aiming to discover a set of partitions
which provide optimal piecewise polynomial approximation.

In practice, however, it is not straightforward to find a parameterization of ϕ which provides
compact support. In Lee et al. (2021), the authors considered two parameterizations: an RBF net-
work which, by construction, provides smooth localized (but not compactly supported) partitions;
and a ResNet which provides good approximation of piecewise polynomial functions but requires a
scheduling strategy and careful calibration of hyperparameters to obtain compact partitions during
training.

3. Probabilistic POU-Net

POU-nets may be recast in a probabilistic context by describing the partitions in terms of a latent
categorical random variable Z(x) ∼ Cat(π(x)) prescribing the probability at a given point x of
evaluating the ith expert model Ei(x). By π(x) we denote a set of discrete probabilities that sum to
one for a given x.

p(Y (x) = y) =

N∑
i=1

p(Ei = y)p(Z(x) = i) (4)

p(Z(x) = i) = πi(x; θ) (5)

p(Ei = y) = p (Y (x) = y|Z(x) = i) = N (y;µi(x), σ
2
i) (6)

µi(x) = c⊺iΦ(x) (7)

where ci ∈ Rdim(Q) and σ2
i are expert coefficients to be determined on each partition, consisting

of a vector of polynomial coefficients and a Gaussian noise model, respectively. We parameterize
the categorical distribution using a deep multinomial classification network consisting of a residual
network composed with a softmax activation. The variable θ denotes the networks weights and
biases.

The expectation and variance of this mixture of experts model is given in closed form

E[Y](x) =

N∑
i=1

πi(x; θ)µi(x) (8)

Var[Y] =
N∑
i=1

πi(x; θ)(σ
2
i + µi(x)

2)− E[Y](x)2. (9)

We note that for the choice πi = ϕi and µi = qi this coincides with the deterministic POU-net

E[Y](x) = yPOU (x). (10)

Unlike Lee et al. (2021) however, the variance formula allows both a heteroscedastic uncertainty
estimator and a means of training the model via maximum likelihood estimation. Noting that the
partitions act as a latent variable, allows the application of an expectation maximization (EM) opti-
mization strategy.

4

MULTILEVEL HPOU

The complete data log-likelihood function, given by

logL(θ;X,Y, Z) =

Nd∑
d=1

N∑
i=1

1Z(xd)=i log
[
πi(xd; θ)N (yd;µi(xd), σ

2
i)
]

(11)

is bounded from below by the evidence based lower bound (ELBO)

LELBO(θ, µ, σ;D) =
Nd∑
d=1

N∑
i=1

p(Z = i|Y = yd) log
πi(xd; θ)N (yd;µi(xd), σ

2
i)

p(Z = i|Y = yd)
, (12)

where we use D to denote data for X and Y .
Maximization of the ELBO is guaranteed to improve the log-likelihood. To achieve this, we

apply the EM method. In the E-step we use Bayes rule and the law of total probability to compute
the posterior probability

wid := p(Z = i|Y = yd) =
πi(xd)N (yd;µi(xd), σ

2
i)∑

I πI(xd)N (yd;µI(xd), σ
2
I)
. (13)

In the M-step, we compute the ELBO as follows, neglecting the denominator of Equation 12 as it is
approximated by a constant and thus does not effect the maximization problem.

LELBO(θ, µ, σ;D) =
Nd∑
d=1

N∑
i=1

wid log
[
πi(xd; θ)N (yd;µi(xd), σ

2
i)
]

(14)

=

Nd∑
d=1

N∑
i=1

wid

[
log πi(xd; θ)−

1

2
log σ2

i −
1

2

(
yd − µi(xd)

σ2
d

)2

− 1

2
log 2π

]
. (15)

To maximize this loss, stationarity requires

∂LELBO

∂µ
= 0,

∂LELBO

∂σ
= 0,

∂LELBO

∂θ
= 0. (16)

For the first condition, for each i we seek an optimal coefficient vector ci, such that µi(x) =∑M
α=1 ci,αΦα(x). A straightforward calculation eveals the following closed-form expression for

the optimal ci as the solution of a weighted least squares problem for each partition i.

Nd∑
d=1

widΦα(xd)Φβ(xd)ci,β =

Nd∑
d=1

widΦα(xd)yd (17)

The optimal polynomial fit is thus given by a least squares problem weighted by the posterior esti-
mation of whether each data point belongs to the partition under consideration. This is remarkable,
as it implies that the optimal polynomial representation may be obtained in a trivially parallel man-
ner by solving N decoupled least squares problems each of rank M , in contrast to the deterministic
POU-net setting where one solves a single N ×M weighted least squares problem.

Similar to Gaussian mixture models, the global optimizer of the second condition is also given
in closed-form as the empirical standard deviation weighted by the posterior:

σ2
i =

∑
dwid (yd − µi(xd))

2∑
d′ wid′

(18)

5

TRASK HENRIKSEN MARTINEZ CYR

The remaining term in Equation 16 however does not admit a closed form expression due to the
deep neural network parameterization of the categorical distribution. We define a loss by taking
only the term depending on θ and apply a gradient optimizer.

L(θ;D) =
∑
i,d

wid log πi(xd; θ) = −H(wid, πi(xd; θ)) (19)

Note that this is equivalent to minimizing the cross entropy H(w, π), providing a reinforcement
mechanism driving the POUs π toward the posterior distribution p(Z = i|Y = yd). While we do
not pursue this connection further in this work, we remark that this admits interpretation as a policy
gradient method in reinforcement learning Sutton et al. (1999): the posterior distribution and Z
serve the role of a reward and policy, respectively, driving the network toward a distribution on Z
which provides optimal localized approximation.

At each step of training, we update the posterior weights, solve the least squares problems,
and perform a gradient update of Equation 19. Optionally, one may update σ via Equation 18
as well, however in Appendix B we provide a study demonstrating that updating σ at each step
leads to partitions with less effective approximation properties. This is because a tight estimate
of σ over-constrains the space near suboptimal local minima with the optimal representation of
noise competing against optimal polynomial fit. Instead, we fix σ = 1 during training and update
σ at the end of training if an uncertainty estimate is desired. For the gradient update, we have
empirically observed that applying the Adam optimizer Kingma and Ba (2014) provides the best
results. Alternating between EM updates (which jump nonlocally around parameter space) and
a gradient update violates the assumptions in the momentum update of Adam. Nonetheless we
obtain good results using Adam in our numerical experiments and postpone design of a more careful
gradient update to Equation 19 to future work.

4. Hierarchical partition of unity

We now provide an extension of the previous section to construct a hierarchy of models which are
amenable to a multilevel training strategy. For ease of exposition we present a two-level method
but the approach extends to arbitrary numbers of refinements. We denote the number of coarse
partitions Nc, the number of fine refinements per coarse partition Nf , and will obtain a total of
N = NfNc partitions across the two-level scheme.

We consider a coarse partition Z1 ∼ Cat (π(x)), and now introduce a fine partition Z2 defined
conditionally via

p(Z1 = i) = πi(x, θ) (20)

p(Z2 = j|Z1 = i) = πij(x, θi) (21)

p(Z1 = i, Z2 = j) = p(Z1 = i)p(Z2 = j|Z1 = i). (22)

In total, Nc + 1 networks are used to parameterize Z1 and Z2: one network on the coarse level,
and one network for each of Nc coarse partitions. Each network’s architecture consists of a ResNet
composed with a softmax activation. Note that the parameterization of the fine level neural networks
is denoted by θi, on the ith coarse partition. When required, we denote the set of all fine level
parameters Θ = {θi}Nc

i=1.

6

MULTILEVEL HPOU

We construct both a coarse mixture of experts

p(Y1(x) = y) =

Nc∑
i=1

p (Y1(x) = y|Z1(x) = i) p(Z1(x) = i) (23)

=

Nc∑
i=1

p(Ei = y)p(Z1(x) = i) (24)

p(Ei = y) = p (Y1(x) = y|Z1(x) = i) = N (y;µi(x), σ
2
i) (25)

µi(x) = c⊺iΦ(x), (26)

and a fine mixture of experts

p(Y2(x) = y) =

Nc∑
i=1

p(Eij = y)p(Z1(x) = i, Z2(x) = j) (27)

p(Eij = y) = p (Y2(x) = y|Z1(x) = i, Z2(x) = j) = N (y;µij(x), σ
2
ij) (28)

µij(x) = c⊺ijΦ(x), (29)

Through marginalization of the fine scale model, we obtain an alternative expression for the coarse
scale probabilities in terms of the fine scale probabilities.

p(Y2 = y|Z1 = i) = EZ2∼πij [p(Y2 = y|Z1 = i, Z2 = j)] (30)

=
∑
j

p(Y2 = y|Z1 = i, Z2 = j)p(Z2 = j|Z1 = i) (31)

=
∑
j

πij(x, θi)N (yd;µij(xd), σ
2
ij) (32)

Following the same expectation maximization procedure from the previous section, we obtain the
following three estimators for posterior distributions

wid := p(Z1 = i|Y1 = yd) =
πi(xd, θ)N (yd;µi(xd), σ

2
i)∑

I πI(xd)N (yd;µI(xd), σ
2
I)
, (33)

wijd := p(Z1 = i, Z2 = j|Y2 = yd) =
πi(xd, θ)πij(x, θi)N (yd;µij(xd), σ

2
ij)∑

I,J πI(xd)πIJ(x, θI)N (yd;µIJ(xd), σ
2
IJ)

, (34)

ŵid := p(Z1 = i|Y2 = yd) =

∑
j πi(xd)πij(x, θi)N (yd;µij(xd), σ

2
ij)∑

I,j πI(xd)πIj(x, θI)N (yd;µIj(xd), σ
2
Ij)

. (35)

The estimator ŵid is constructed by marginalizing the fine level estimator on to the coarse level.
This will be used in the construction of the multilevel scheme.

Following the same procedure from the previous section, we obtain two weighted least squares
problems for the coarse and fine scale expert models.

Nd∑
d=1

widΦα(xd)Φβ(xd)ci,β =

Nd∑
d=1

widΦα(xd)yd (36)

Nd∑
d=1

wijdΦα(xd)Φβ(xd)cij,β =

Nd∑
d=1

wijdΦα(xd)yd (37)

7

TRASK HENRIKSEN MARTINEZ CYR

Coarse

Fine

EM CoarseEM Coarse

Initialization V-cycle Iterate

EM Fine

EM Coarse

EM Fine

Restrict

Pr
olo

ng
at

e Restrict

Pr
olo

ng
at

e
Figure 1: A two-level “V-cycle” for training the hierarchical POU networks. For details in pseudo-

code see Algorithm 4.1, where the figure depicts the case Spre = 0, Scoarse = 1 and
Spost = 1. The horizontal axis subdivides the algorithm into stages mimicking a V-cycle
AMG scheme; EM-Fine, Restrict, EM-Coarse, and Prolongate. The algorithmic kernel
comprised of these stages, highlighted with black, defines the V-cycle. The light grey
stages are representative of an initialization phase, and an iteration of repeated V-cycles.

Finally, analogous to Equation 19, we define the following three losses

Lc(θ;D) =
∑
i,d

wid log πi(xd; θ), (38)

Lf (θi;D) =
∑
i,j,d

wijd log (πi(xd; θ)πij(xd; θi)) , (39)

Lf2c(θ;D) =
∑
i,d

ŵid log πi(xd; θ). (40)

The first and second losses align the coarse and fine partitions with their corresponding posterior es-
timators. The third loss aligns the coarse partitions with the marginalized fine scale model, allowing
the coarse partition to access fine scale information.

4.1. Multilevel Training of Hierarchical POUs

Our approach is motivated by multilevel methods used to solve PDEs Brandt (1977); Trottenberg
et al. (2000); Briggs et al. (2000), optimization problems Nash (2000); Gaedke-Merzhäuser et al.
(2020) and, recently, to train neural networks Gunther et al. (2020); Kirby et al. (2020); Moon and
Cyr (2021); Gaedke-Merzhäuser et al. (2020). Figure 1 is a schematic description of Algorithm 4.1
for a two-level V-cycle. In the algorithm we mimick the Relaxation, Restriction, Correction and
Prolongation structure of a typical multigrid scheme.

The intuition behind the multilevel scheme is that we desire a hierarchy of partitions which
simultaneously provide good approximations at both coarse and fine length scales, while maintain-
ing that the coarse approximation should approximate the fine approximation. This allows steps of
gradient descent to evolve at multiple rates, with partitions on each scale evolved using separate
instances of Adam with separate momenta.

In nonlinear multilevel methods for solving PDEs, the prolongation step consists of a data remap
of the coarse correction to produce a correction on the fine level. However, due to the marginaliza-
tion formula in Equation 30, no remap is necessary as the coarsened probability distribution may be

8

MULTILEVEL HPOU

Function TwoLevel(θ : coarse weights,Θ : fine weights,Spre,Spost,Scoarse):
// Pre-relaxation

for i = 1...Spre do
wijd ← FinePosterior(θ,Θ, cij) // See Posterior Definition in Eq. 34

cij ← WeightedLeastSquares(wijd) // See Eq. 37

Θ← Gradient-Descent(wijd, θ,Θ,Lf) // See Eq. 38

end
// Restrict

ŵid ←
∑

j wijd // See Eq. 35

θ ← Gradient-Descent(ŵid, θ,Lf2c) // See Eq. 38

// Coarse correction

for i = 1...Scoarse do
wid ← CoarsePosterior(θ, ci) // See Posterior Definition in Eq. 33

ci ← WeightedLeastSquares(wid) // See Eq. 36

θ ← Gradient-Descent(wid, θ,Lc) // See Eq. 38

end
// Prolongation: Use the most recent value of θ on the fine level

// Post-relaxation

for i = 1...Spost do
wijd ← FinePosterior(θ,Θ, cij) // See Posterior Definition in Eq. 34

cij ← WeightedLeastSquares(wijd) // See Eq. 37

Θ← Gradient-Descent(wijd, θ,Θ,Lf) // See Eq. 38

end
Algorithm 1: Mimicking the steps of a V-cycle multigrid scheme, the two level training consists of:
solving on the fine scale (pre-relaxation); using the fine scale prediction to update the coarse scale
(restrict); solving on the coarse scale (coarse correction); and then optionally solving again on the
fine scale (post-relaxation) using the θ from the coarse level (prolongation).

directly evaluated from the fine one. Polynomial coefficients are fully decoupled on each partition
and are computed using a GPU-accelerated weighted least squares solve.

To provide further motivation for the effectiveness of alternating between coarse and fine scales,
the hierarchical architecture admits the following decomposition of the ELBO loss (Eq. 39).

Lf (θi;D) =
∑
i,j,d

wijd log (πi(xd; θ)πij(xd; θi)) (41)

=
∑
i,j,d

wijd log (πi(xd; θ)) +
∑
i,j,d

wijd log (πij(xd; θi)) (42)

=
∑
id

∑
j

wijd

︸ ︷︷ ︸

ŵid

log (πi(xd; θ)) +
∑
i,j,d

wijd log (πij(xd; θi)) (43)

= Lf2c(θ;D) +
∑
i,j,d

wijd log (πij(xd; θi)) . (44)

Therefore, the ELBO decomposes into the marginalized ELBO plus a correction of the fine scales.

9

TRASK HENRIKSEN MARTINEZ CYR

5. Numerical experiments

We gather results in one and two dimensions to establish the performance of the approach. Data and
code to reproduce experiments may be found at https://anonymous.4open.science/r/
pounets-4084/hierarchicalPOU.ipynb. All parameters necessary to reproduce experi-
ments may be found in Appendix A.

5.1. Adaptive approximation of smooth functions

We approximate the function y(x) = exp
[
−1

2

(
x−0.5
0.05

)]2 using three coarse partitions each refined
with two fine scale partitions (N = 6). In Figure 2, we observe that the partitions evolve from
randomly initialized into a disjoint partition of space, providing localized polynomial approximation
refined about the Gaussian peak.

We next demonstrate the impact of the multilevel strategy by approximating the function

y(x) = sin 2πx+ exp

[
−1

2

(
x− 0.5

0.05

)]2
(45)

using Nc = 15 coarse partitions with Nf = 3 refinements (N = 45). We compare to an otherwise
identical single level POUnet, consisting of either N = 15 or N = 45 partitions. Therefore, we
obtain a comparison of both the fine and coarse scales to a corresponding single level architecture.
In Figure 3, we observe an order of magnitude increase in accuracy for the fine scale approximation.
One may, as a post-processing step, fit higher order polynomials while keeping the partitions fixed
to achieve spectral convergence.

5.2. Adaptive approximation of piecewise smooth functions

Next we approximate the piecewise quadratic function

y(x; p) =

(
2

∣∣∣∣px− ⌊
px+

1

2

⌋∣∣∣∣− 1

)2

. (46)

This function was considered in Lee et al. (2021), where it was demonstrated that deterministic
POU-nets are able to provide approximation with error under 1% as p is increased, while for a
dense network accuracy degrades for large p. In Figure 4, we are able to achieve accuracy to
machine precision with a single set of parameters.

5.3. Two-dimensional reduced regularity data

In Figure 5 we define

s(x, y) = y − (x− 1

2
)2

and regress the two functions
f1(x, y) = sin 2πs(x, y) (47)

and

f2(x, y) =

(
2

∣∣∣∣4s(x, y)− ⌊
4s(x, y) +

1

2

⌋∣∣∣∣− 1

)2

, (48)

10

https://anonymous.4open.science/r/pounets-4084/hierarchicalPOU.ipynb
https://anonymous.4open.science/r/pounets-4084/hierarchicalPOU.ipynb

MULTILEVEL HPOU

Figure 2: Evolution of partitions and approximations from initialization (left column) to 1000 steps
(center column) and 100000 steps (right column). Initially random partitions rapidly as-
semble into disjoint compactly supported subdomains (top row). Clustering near features
provides localized approximation to data (center row) and accurate pointwise error (bot-
tom row).

11

TRASK HENRIKSEN MARTINEZ CYR

Figure 3: Convergence comparison of N = 15 (left) or N = 45 (center) single stage partitions
(blue) to two-stage (Nc = 15, Nf = 3) scheme with same total partitions N = 45
(red) and otherwise identical parameters. An order of magnitude increase in accuracy
is realized for multistage scheme. When sequentially higher-order polynomials are used
on each partition (right) exponential convergence is observed. Log-normal statistics over
five runs are presented.

where f1 ∈ C∞ and f2 ∈ C0. We use these to study convergence in two dimensions in com-
parison to traditional finite element spaces; namely a pth-order discontinuous Galerkin (DG) space
on a Cartesian grid consisting of N total elements. Following Wendland (Theorem 3.2) Wendland
(2004), local polynomial reproductions consisting of compactly supported basis functions which
reproduce mth-order polynomials admit the optimal scaling

||f − flpr||∞(Ω) ≤ CN−m+1
d |f |Cm+1 ,

where | · |Cm denotes the Hm seminorm. This scaling on the dimension d is based upon a packing
argument requiring |Ω|

N hd to fill space. This provides one notion of the ”curse-of-dimensionality”,
where the algebraic convergence rate with respect to the total number of partitions scales inversely
with the latent dimension. The comparison in Figure 5 demonstrates algebraic convergence for
the POU approximation at a faster rate than a corresponding DG space with the same number of
elements/partitions and equal polynomial order. As shown in the figure, this is because the learnt
partitions may take advantage of underlying low-dimensional structure - in this case the quasi-1D
dependence on s(x, y).

5.4. Application: semiconductor device modeling

Finally, we consider an application in which one regresses a map governing the electrical current
as a function of voltage drop for a transistor device. Data-driven models for semiconductor de-
vices have attracted attention as a means of embedding richer representations of physics when first
principles models are either inaccurate or computationally intractable, and the regressed “IV-curve”
response is embedded as a component into a circuit simulator and used to perform system scale
design. This data set is subtly challenging for non-parametric regression, as the response varies
from ideal diode behavior with exponential scaling at small voltage drops, to resistive behavior with
linear scaling at large voltage drops. Accurate prediction of device performance hinges on accu-
rate prediction over ten orders of magnitude variation in the current. To handle this broad range

12

MULTILEVEL HPOU

Figure 4: Approximation of piecewise quadratic function (top left) and resulting piecewise dis-
joint partitions (top right). While Lee et al. (2021) demonstrated poor performance for a
ResNet and sustained < 1% accuracy for deterministic POU-nets as the number of piece-
wise quadratic regions was increased (bottom left), the proposed hierarchical approach is
able to reliably achieve machine precision for a single set of parameters (bottom right).
Statistics are presented as running minimum over ten runs assuming log-normal distribu-
tion. For large numbers of peaks, after many iterations the solution diverges. While this
can be avoided by choosing a smaller learning rate, we present all results with a single
set of hyperparameters.

of scales, previous researchers (Aadithya et al. (2020); Gao et al. (2020)) manually partitioned the
response into an exponential and linear regime and introduced scaling of data within each to achieve
a good approximation. While effective, this human-in-the-loop approach precludes automation, and
we demonstrate superior accuracy may be obtained without human intervention. All results are cal-
culated using a log scaling of the current and a transform of the voltages to map onto a unit interval.
For this example only, we perform a grid search hyperparameter tuning to obtain the most compact
architecture capable of matching both the logarithmic and linear current response.

In Figure 6 we demonstrate predictions of the linear- and log-scale current response using ei-
ther piecewise quadratic or quartic polynomials. In Table 1 we compare the performance of the
multilevel scheme against an otherwise identical single level POU-Net. In general, the multistage
training provides a surrogate with up to two orders of magnitude better accuracy, and often will pro-
vide a coarse scale prediction that outperforms the single level model despite using half the number
of partitions. Finally, in Figure 7 we consider a three-terminal bipolar junction transistor device for
which the current is a function of two voltage drops, posing a two-dimensional regression problem.

13

TRASK HENRIKSEN MARTINEZ CYR

Figure 5: 2D convergence study for reduced regularity data: We consider approximation of
C0 and C∞ functions in two dimensions. Top left: C0 function approximated. Maxi-
mum value (yellow contours) coincides with discontinuity in first derivative. Top right:
Partitions associated with C0 function, with boundaries visualized by plotting contours
associated with argmax of POU. Partition boundaries align with discontinuities. Bottom:
Algebraic convergence with respect to number of partitions for C∞ data (left) and C0 data
(right) with comparison to corresponding discontinuous polynomial (DG) space. Black,
red, blue and green lines correspond to first, second, third and fourth order polynomial
spaces respectively. For smooth data, we observe a nominal improvement compared to
a traditional space, with algebraic convergence rates matching or exceeding DG space.
For C0 data the DG approximation is hindered by reduced regularity, while adaptivity of
the current approach allows realization of an order of magnitude reduction in partitions
required to reach comparable accuracy.

14

MULTILEVEL HPOU

ℓ∞ ℓ2
N Porder mean - stdev mean mean + stdev mean - stdev mean mean + stdev
8 2 3.1E-3 3.8E-3 4.7E-3 1.1E-3 1.3E-3 1.5E-3
8 4 6.2-5 2.0E-4 6.4E-4 2.3E-5 7.5E-5 2.4E-4

(4,2) coarse 2 6.6E-7 1.8E-4 3.3E-4 4.7E-5 7.7E-5 1.2E-4
(4,2) coarse 4 9.6E-5 2.5E-4 6.5E-4 2.4E-5 7.3E-5 2.3E-4

(4,2) fine 2 1.1E-3 1.4E-3 1.8E-3 3.9E-4 5.1E-4 6.4E-4
(4,2) fine 4 2.0E-6 6.6E-6 2.2E-5 6.6E-7 2.3E-6 8.3E-6

Table 1: Comparison of single level POU against multilevel POU for semiconductor problem. Fine
scale prediction of multilevel POU is two orders of magnitude more accurate with a lower
standard deviation, while the coarse multilevel prediction provides a more accurate predic-
tion than the single training while using half as many partitions. Statistics are computed
over five runs assuming a log normal distribution of error.

This is the only test we performed which required moving to a larger network (presumably due to
the higher dimension).

Figure 6: Prediction of IV-curve for transistor device using 4 coarse partitions with 2 refinements,
using either quadratic (top) or quartic (bottom) polynomials. To serve as an accurate
surrogate for circuit simulation, the approximation must reproduce a response on linear
(left) and logarithmic (center) scales, posing a challenging regression problem spanning
five orders of magnitude. Interestingly, training using different ordering of polynomials
provides qualitatively different partitions of space (right).

15

TRASK HENRIKSEN MARTINEZ CYR

Figure 7: Prediction of IV-response for bipolar junction transistor device, requiring prediction
across two-dimensional input space. Left: Training data, Right: Prediction, Top: Log-
scale current, Bottom: Linear-scale current.

6. Conclusion

We have presented a new probabilistic generalization of POU-nets which may be applied in a hier-
archical manner and trained with a V-cycle inspired multilevel scheme. Benchmarks show that this
provides a marked improvement compared to either deep neural network or deterministic POU-nets
for a range of benchmarks.

While for simplicity the current work has focused on a two level scheme, in principle the ap-
proach could be extended to an arbitrary number of levels, similar to traditional multigrid methods.
We pursue this in future work, anticipating improvements both in quality of solution as well as
exposing exploitable parallelism. As the calculation decouples into a large number of small least
squares problems and loss functions, it is a candidate for both MPI-style domain decomposition and
GPU-accelerated solution of the linear systems.

An additional further direction of research is to generalize this strategy to solve partial differen-
tial equations (PDEs) in high dimensions. While initial works have shown promise using DNNs to
solve PDEs, realizing the convergence guarantees typical of finite element methods remains elusive.
In future work we apply the ideas introduced here to the solution of both physics-informed neural
networks Raissi et al. (2019) and structure-preserving architectures Trask et al. (2022).

16

MULTILEVEL HPOU

Acknowledgments

N. Trask acknowledges funding under the Collaboratory on Mathematics and Physics-Informed
Learning Machines for Multiscale and Multiphysics Problems (PhILMs) project funded by DOE
Office of Science (Grant number DE-SC001924). N. Trask and E. Cyr acknowledge support from
the DOE Early Career program. A. Henriksen acknowledges support from the Sandia data science
postdoctoral fellowship. Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DENA0003525. This paper describes objective technical
results and analysis. Any subjective views or opinions that might be expressed in the paper do not
necessarily represent the views of the U.S. Department of Energy or the United States Government.
SAND number: SAND2022-4027 O

References

K Aadithya, Paul Kuberry, B Paskaleva, P Bochev, K Leeson, Alan Mar, Ting Mei, and E Keiter.
Development, demonstration, and validation of data-driven compact diode models for circuit
simulation and analysis. arXiv preprint arXiv:2001.01699, 2020.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. The Journal of
Machine Learning Research, 18(1):629–681, 2017.

Christan Beck, Arnulf Jentzen, and Benno Kuckuck. Full error analysis for the training of deep
neural networks. arXiv preprint arXiv:1910.00121, 2019.

Jens Berg and Kaj Nyström. A unified deep artificial neural network approach to partial differential
equations in complex geometries. Neurocomputing, 317:28–41, 2018.

John P Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 2001.

Achi Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics of computa-
tion, 31(138):333–390, 1977.

William L Briggs, Van Emden Henson, and Steve F McCormick. A multigrid tutorial. SIAM, 2000.

James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of computation, 19(90):297–301, 1965.

Eric C Cyr, Mamikon A Gulian, Ravi G Patel, Mauro Perego, and Nathaniel A Trask. Robust
training and initialization of deep neural networks: An adaptive basis viewpoint. In Mathematical
and Scientific Machine Learning, pages 512–536. PMLR, 2020.

Lisa Gaedke-Merzhäuser, Alena Kopaničáková, and Rolf Krause. Multilevel minimization for deep
residual networks. arXiv preprint arXiv:2004.06196, 2020.

Xujiao Gao, Andy Huang, Nathaniel Trask, and Shahed Reza. Physics-informed graph neural net-
work for circuit compact model development. In 2020 International Conference on Simulation
of Semiconductor Processes and Devices (SISPAD), pages 359–362. IEEE, 2020.

17

TRASK HENRIKSEN MARTINEZ CYR

Amara Graps. An introduction to wavelets. IEEE computational science and engineering, 2(2):
50–61, 1995.

Leslie Greengard and William D Gropp. A parallel version of the fast multipole method. Computers
& Mathematics with Applications, 20(7):63–71, 1990.

Stefanie Gunther, Lars Ruthotto, Jacob B Schroder, Eric C Cyr, and Nicolas R Gauger. Layer-
parallel training of deep residual neural networks. SIAM Journal on Mathematics of Data Science,
2(1):1–23, 2020.

Jiequn Han, Arnulf Jentzen, and E Weinan. Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510,
2018.

Juncai He, Lin Li, Jinchao Xu, and Chunyue Zheng. Relu deep neural networks and linear finite
elements. arXiv preprint arXiv:1807.03973, 2018.

Bayram Ali Ibrahimoglu. Lebesgue functions and lebesgue constants in polynomial interpolation.
Journal of Inequalities and Applications, 2016(1):1–15, 2016.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural computation, 6(2):181–214, 1994.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Andrew Kirby, Siddharth Samsi, Michael Jones, Albert Reuther, Jeremy Kepner, and Vijay Gade-
pally. Layer-parallel training with gpu concurrency of deep residual neural networks via nonlinear
multigrid. In 2020 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, sep
2020.

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE transactions on neural networks, 9(5):987–
1000, 1998.

Kookjin Lee, Nathaniel A Trask, Ravi G Patel, Mamikon A Gulian, and Eric C Cyr. Partition of
unity networks: deep hp-approximation. arXiv preprint arXiv:2101.11256, 2021.

Stéphane Mallat. A wavelet tour of signal processing. Elsevier, 1999.

Saeed Masoudnia and Reza Ebrahimpour. Mixture of experts: a literature survey. Artificial Intelli-
gence Review, 42(2):275–293, 2014.

Euhyun Moon and Eric C Cyr. Parallel training of gru networks with a multi-grid solver for long
sequences. In International Conference on Learning Representations, 2021.

Stephen G Nash. A multigrid approach to discretized optimization problems. Optimization Methods
and Software, 14(1-2):99–116, 2000.

William L Oberkampf and Christopher J Roy. Verification and validation in scientific computing.
Cambridge University Press, 2010.

18

MULTILEVEL HPOU

Joost AA Opschoor, Philipp C Petersen, and Christoph Schwab. Deep relu networks and high-order
finite element methods. Analysis and Applications, 18(05):715–770, 2020.

Tomaso Poggio, Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Miranda, and Qianli Liao. Why
and when can deep-but not shallow-networks avoid the curse of dimensionality: a review. Inter-
national Journal of Automation and Computing, 14(5):503–519, 2017.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Christoph Schwab and Jakob Zech. Deep learning in high dimension: Neural network expression
rates for generalized polynomial chaos expansions in uq. Analysis and Applications, 17(01):
19–55, 2019.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Nathaniel Trask, Andy Huang, and Xiaozhe Hu. Enforcing exact physics in scientific machine
learning: a data-driven exterior calculus on graphs. Journal of Computational Physics, page
110969, 2022.

Rohit K Tripathy and Ilias Bilionis. Deep uq: Learning deep neural network surrogate models for
high dimensional uncertainty quantification. Journal of computational physics, 375:565–588,
2018.

Ulrich Trottenberg, Cornelius W Oosterlee, and Anton Schuller. Multigrid. Elsevier, 2000.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow patholo-
gies in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–
A3081, 2021a.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. On the eigenvector bias of fourier feature net-
works: From regression to solving multi-scale pdes with physics-informed neural networks. Com-
puter Methods in Applied Mechanics and Engineering, 384:113938, 2021b.

Holger Wendland. Scattered data approximation, volume 17. Cambridge university press, 2004.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:
103–114, 2017.

Dmitry Yarotsky. Optimal approximation of continuous functions by very deep relu networks. In
Conference on learning theory, pages 639–649. PMLR, 2018.

19

TRASK HENRIKSEN MARTINEZ CYR

Appendix A. Hyperparameters

For all results, the partition of unity architectures are initialized using the Box initialization outlined
in Cyr et al. (2020).

For all one dimensional studies, we take for POU architectures a multilayer perceptron of width
ten and depth two with tanh activation composed with a softmax. For the final two-dimensional
exemplar, we take an otherwise identical slightly larger POU network of width twenty and depth
two. All training is performed with a two level scheme, with a timestep of size 0.5e-3 for the Adam
optimizer. While better performance may be obtained for some problems by selecting a smaller
learning rate, we chose to perform all tests using a single set of parameters to demonstrate accuracy
is not do to hyperparameter tuning.

For the piecewise quadratic benchmark, we choose number of total fine partitions to be twice
the number of piecewise polynomial regions.

Over the course of peer-review, demonstration code for one of the examples may be found
at https://anonymous.4open.science/r/ pounets-4084/hierarchicalPOU.ipynb. Due to memory con-
straints on the anonymous github we can only host a single jupyter notebook demoing the implemen-
tation, but the accepted article will include scripts running each experiment as well as all datasets
used.

Appendix B. Effect of noise model for noisy and non-noisy data

In this Section, we consider approximation of the 1D function

y(x) = sin 2πx+ C(x)ϵ,

ϵ ∼ N (0, 1),

considering either no noise (C(x) = 0), or with the heteroskedastic noise

C(x) =

0, if x ≤ 1

2

0.1, if 1
2 ≥ x ≤ 3

4

0.5, if 3
4 ≥ x

For this study, we consider 500 uniformly sampled data points, Nc = 8 coarse partitions with
Nf = 2 refinements or N = 16 total partitions and a quadratic polynomial space. The learning
rate is kept at the 5e − 3 value used throughout the paper. Figure 9 demonstrates the performance
between either using Equation 18 to update the noise model at each step of training or keeping
it fixed to one. Figure 8 provides statistics describing the evolution of the error during training,
demonstrating that the trends are consistent independent of initialization.

20

MULTILEVEL HPOU

Figure 8: Mean and two standard deviations over 10 experiments demonstrate results in Figure 9
are repeatable and insensitive to random initialization. For noisy data (left), both updates
to noise model provide comparable accuracy. For clean data (right), keeping σ = 1 fixed
during training consistently provides an order of magnitude increase in accuracy.

21

TRASK HENRIKSEN MARTINEZ CYR

Figure 9: Noise model fitting study: We compare fitting 1D data with heterogeneous noise (rows
1+2) and without noise (rows 3+4), updating noise at each iteration using either the
EM estimator in Equation 18 (rows 1+3) or fixing σ = 1 during training and updating
the noise model after training is completed (rows 2+4). For all, the analytic expression
variance (Equation 9) provides and accurate error estimator (column 2). For noisy data,
applying the EM estimator results in a tight fit to noise but with noisy partitions which
provide poor approximation properties, while the second strategy provides a comparably
good representation of noise while maintaining improved accuracy. For clean data, the
EM estimator provides a uniform bound on the error (row 3, column 2) but with an overall
larger mean error of 2.46× 10−3 vs. 4.03× 10−4.

22

	Introduction
	Deterministic POU-nets
	Probabilistic POU-Net
	Hierarchical partition of unity
	Multilevel Training of Hierarchical POUs

	Numerical experiments
	Adaptive approximation of smooth functions
	Adaptive approximation of piecewise smooth functions
	Two-dimensional reduced regularity data
	Application: semiconductor device modeling

	Conclusion
	Hyperparameters
	Effect of noise model for noisy and non-noisy data

